|
カテゴリ:書籍
著者は、一般相対性理論、重力理論、理論宇宙物理学がご専門で、弘前大学大学院・宇宙物理学研究センターのセンター長・教授である浅田秀樹さん。『三体問題 天才たちを悩ませた400年の未解決問題』(2021年3月、講談社ブルーバックス)の著者でもある。 第1章は「重力とはなに」をテーマに、ケプラーの法則、ニュートンの万有引力の法則、アインシュタインの特殊相対性理論・一般相対性理論を振り返る。 第4章では、素粒子理論に触れつつインフレーション理論を紹介する。インフレーション理論は、現時点で証拠がつかめていないが、ビッグバン理論が抱えていたマイクロ波背景放射が高い精度で等方的であること、宇宙の曲率が限りなくゼロに近いこと、モノポールやグラビティーノが検出されないこと、宇宙の大規模構造があることなどを説明できることから、多くの研究者たちに受け入れられているという。インフレーション理論を裏付ける証拠として、原始背景重力波が注目されている。重力波は物質ではないので、変換されることなく、時間とともに引き伸ばされているはずだ。 第5章では、相対性理論から導かれるブラックホールの性質を概説する。2012年に地球上にある複数の電波望遠鏡の観測データを合成することで、地球サイズの口径に匹敵するバーチャルな巨大電波望遠鏡を構成するイベント・ホライズン・テレスコープ(ETH)が発足し、2017年4月に20マイクロ秒角という角度分解能を達成し、約6000万光年彼方にあるM87銀河の中心に太陽質量の約60億倍の巨大ブラックホールを発見した。そして2022年5月には、天の川銀河の中心に太陽質量の約400万倍の巨大ブラックホールがあることを発見した。しかし、現時点では、巨大ブラックホールの生成メカニズムは解明されていない。 第6章では、いよいよナノヘルツ重力波を捉えることができるパルサータイミング法の基本原理を解説する。複数の安定したパルサーの電波パルスは、重力波が通過したときにパルス間隔が揺らぐ。さまざまなノイズを除去した結果、その揺らぎがヘリングス‐ダウンズ曲線に一致すれば、重力波を観測したと言える。 第7章では、PTA以外の重力波観測方法として位置天文学を紹介する。欧州宇宙機関(ESA)は三角測量によって恒星の位置を直接観測するヒッパルコス衛星やガイア衛星を打ち上げ、20億の恒星の位置が特定された。これらの恒星は固有運動をしているが、もし一定の方向性があれば重力波が通った証拠になる。まだその証拠はつかめていないが、日本が計画している赤外線位置天文衛星「JASMINE」や、アメリカが計画している「ナンシー・グレース・ローマン宇宙望遠鏡」が稼動を始めれば、さらにデータが集まるだろう。 重力波というと、SFによく出てくる単語だが、本書を読んで、それが空間そのものの横波であり、検出可能なものであることがよく分かった お気に入りの記事を「いいね!」で応援しよう
最終更新日
2024.10.20 15:00:51
コメント(0) | コメントを書く
[書籍] カテゴリの最新記事
|